7.1 Diagonalization of Symmetric Matrices

A symmetric matrix is a matrix A such that AT = A.
For example,
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] are nonsymmetric.

An orthogonal matrix is a real square matrix whose columns and rows are orthonormal vectors. Equivalently,
a matrix P is orthogonal if its transpose is equal to its inverse: PT = P_1.<—> /DT P = T

Example 1. Determine which of the matrices below are orthogonal. If orthogonal, find the inverse.
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Theorem 1. If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.

e Ann X nm matrix A is said to be orthogonally diagonalizable if there are an orthogonal matrix P (with
P~! = PT)and adiagonal matrix D such that

A=pPDPT = pDppP! (1)

e If A is orthogonally diagonalizable as in (1), then

AT = (PDPT)" = PTTDTPT = PDPT = 4

e Thus A is symmetric. Conversely, every symmetric matrix is orthogonally diagonalizable as in Theorem 2:

Theorem 2. An n X n matrix A is orthogonally diagonalizable if and only if A is a symmetric matrix.

e |n particular, a symmetric matrix is always diagonalizable.
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eigenvector. Then orthogonally diagonalize A.
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The Spectral Theorem

The set of eigenvalues of a matrix A is sometimes called the spectrum of A, and the following description of
the eigenvalues is called a spectral theorem.

Theorem 3. The Spectral Theorem for Symmetric Matrices

An n X n symmetric matrix A has the following properties:

a. A has n real eigenvalues, counting multiplicities.

b. The dimension of the eigenspace for each eigenvalue A equals the multiplicity of A as a root of the
characteristic equation.

c. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different
eigenvalues are orthogonal.

d. A is orthogonally diagonalizable.

Spectral Decomposition

Suppose A = PDP !, where the columns of P are orthonormal eigenvectors uy, . . ., u, of A and the
corresponding eigenvalues A1, . .., A, are in the diagonal matrix D. Then, since P~ = PT,
A 0 ur{
A=PDPT =[u; -+ u,]
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Using the column-row expansion of a product (Theorem 10 in Section 2.4), we can write
n

A= Aluluf + )\2u2ug + e 4 Auul (2)

e This representation of A is called a spectral decomposition of A because it breaks up A into pieces
determined by the spectrum (eigenvalues) of A.

Example 4. Construct a spectral decomposition of A from Example 2.
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Exercise 5. Suppose A = PRP !, where P is orthogonal and R is lower triangular. Show that if A is
symmetric, then R is symmetric and hence is actually a diagonal matrix.

Solution. If A = PRP’1 then P~1AP = R. Since P is orthogonal, R = PT AP. Hence

RT = (PTAP) = PTATPTT — PT AP = R, which shows that R is symmetric. Since R is also lower

triangular, its entries below the diagonal must be zeros to match the zeros above the diagonal. Thus R is a
diagonal matrix.

Exercise 6. Orthogonally diagonalize the matrices given below, giving an orthogonal matrix P and a diagonal
matrix D.

: 1 -5
(1) 5 1
[ 1 —6 4]
-6 2 -2
| 4 -2 -3
[ 5 8 —4
3) 8 5 —4
|—4 -4 -1}
Solution.

1 -5 5 5
(1) Let A = 5 1 . Then the characteristic polynomial of Aiis (1 — A)* —25 = A\ — 2\ — 24

= (A — 6)(A +4), so the eigenvalues of A4 are 6 and —4. For A = 6, one computes that a basis for the
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1 /\/—] . For A = —4, one computes that a basis
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D = lo _4] . Then P orthogonally diagonalizes A, and

P = [111 112] = [
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2)Let A= |—6 2 —2|.The eigenvalues of A are —3, —6 and 9. For A = —3, one computes that a
4 -2 -3
1 1/3
basis for the eigenspace is | 2|, which can be normalized to getu; = [2/3|.For A = —6, one computes
2 2/3
—9 —2/3
that a basis for the eigenspace is | —1|, which can be normalized to get uz = | —1/3|.For A = 9, one
2 2/3
2/3
computes that a basis for the eigenspace is [ —2 |, which can be normalized to get ug = —2/3]| . Let
1 1/3
1/3 —2/3 2/3 -3 0 0
P=[u uy; ug)=(2/3 —-1/3 —2/3landD=| 0 —6 O0f.Then P orthogonally diagonalizes
2/3 2/3 1/3 0 0 9
A ,and A = PDP 1,
5 8§ —4
(3) Let A = 8 5 —4/|.The eigenvalues of A are —3 and 15. For A\ = —3, one computes that a which
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is orthogonal and can be normalized to get basis for the eigenspace is =11, 2
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— 0
D=1 0 -3 0].Then P orthogonally diagonalizes A, and A = PDP .
0 0 15

Exercise 7. Suppose A and B are both orthogonally diagonalizable and AB = BA. Explain why ABis also
orthogonally diagonalizable.

Solution. If A and B are orthogonally diagonalizable, then A and B are symmetric by Theorem 2. If
AB = BA, then (AB)T = (BA)T = ATBT = AB. So AB is symmetric and hence is orthogonally
diagonalizable by Theorem 2.



