7.1 Diagonalization of Symmetric Matrices

A symmetric matrix is a matrix A such that $A^{T}=A$.
For example,
$\left[\begin{array}{rr}1 & 0 \\ 0 & -3\end{array}\right], \quad\left[\begin{array}{rrr}0 & -1 & 0 \\ -1 & 5 & 8 \\ 0 & 8 & -7\end{array}\right], \quad\left[\begin{array}{lll}a & b & c \\ b & d & e \\ c & e & f\end{array}\right]$ are symmetric.
$\left[\begin{array}{rr}1 & -3 \\ 3 & 0\end{array}\right],\left[\begin{array}{rrr}1 & -4 & 0 \\ -6 & 1 & -4 \\ 0 & -6 & 1\end{array}\right], \quad\left[\begin{array}{llll}5 & 4 & 3 & 2 \\ 4 & 3 & 2 & 1 \\ 3 & 2 & 1 & 0\end{array}\right]$ are nonsymmetric.

An orthogonal matrix is a real square matrix whose columns and rows are orthonormal vectors. Equivalently, a matrix P is orthogonal if its transpose is equal to its inverse: $P^{T}=P^{-1} \Longleftrightarrow P^{\top} P=I$

Example 1. Determine which of the matrices below are orthogonal. If orthogonal, find the inverse.
(1) $\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$
(2) $\left[\begin{array}{rrr}1 / 3 & 2 / 3 & 2 / 3 \\ 2 / 3 & 1 / 3 & -2 / 3 \\ 2 / 3 & -2 / 3 & 1 / 3\end{array}\right]$

Ans: (1) Note P is square. $P^{\top} P=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]=2 I \neq I$. P is not orthogonal.
(2) P is a square matrix.

$$
P^{\top} P=\left[\begin{array}{rrr}
1 / 3 & 2 / 3 & 2 / 3 \\
2 / 3 & 1 / 3 & -2 / 3 \\
2 / 3 & -2 / 3 & 1 / 3
\end{array}\right]\left[\begin{array}{rrr}
1 / 3 & 2 / 3 & 2 / 3 \\
2 / 3 & 1 / 3 & -2 / 3 \\
2 / 3 & -2 / 3 & 1 / 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I .
$$

Thus p is orthogonal and $P^{-1}=P^{\top}=\left[\begin{array}{rrr}1 / 3 & 2 / 3 & 2 / 3 \\ 2 / 3 & 1 / 3 & -2 / 3 \\ 2 / 3 & -2 / 3 & 1 / 3\end{array}\right]$

Example 2. Diagonalize the matrix $A=\left[\begin{array}{rrr}6 & -2 & -1 \\ -2 & 6 & -1\end{array}\right]$ Notice A is symmetric.
ANS: Recall to diagonalize A, we need to find an invertible P and diagonal D such $A=P D P^{-1}$.
Exercise: Check the eigenvalues and eigenvectors of A are

$$
\lambda_{1}=8, \vec{V}_{1}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], \quad \lambda_{2}=6, \vec{V}_{2}=\left[\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right], \quad \lambda_{3}=3, \vec{V}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Notice that, $\vec{V}_{1} \cdot \vec{V}_{2}=0, \vec{V}_{2} \cdot \vec{V}_{3}=0$ and $\vec{V}_{1} \cdot \vec{V}_{3}=0$, ie.
$\left\{\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3}\right\}$ is an orthogonal basis for \mathbb{R}^{3}.
We can normalize $\left\{\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3}\right\}$. to get an orthonormal basis.

$$
\begin{aligned}
& \vec{u}_{1}=\frac{\vec{V}_{1}}{\left\|\vec{V}_{1}\right\|}=\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right], \quad \vec{u}_{2}=\frac{\vec{V}_{2}}{\left\|\vec{V}_{2}\right\|}=\left[\begin{array}{c}
-\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{6}}
\end{array}\right], \quad \vec{U}_{3}=\frac{\vec{V}_{3}}{\left\|\vec{V}_{3}\right\|}=\left[\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right] \\
& \text { Let } P=\left[\begin{array}{lll}
\vec{U}_{1} & \vec{U}_{2} & \vec{U}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}}
\end{array}\right] \quad D=\left[\begin{array}{lll}
8 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 3
\end{array}\right]
\end{aligned}
$$

Then $A=P D P^{-1}=P D P^{\top}$
Note P is an orthogonal matrix $(P$ is square and has orthonormal columns), thus $P^{-1}=P^{\top}$
The next theorem explains why the eigenvectors for A are orthogonal (Since A is symmetric and they come from distinct evs)

Theorem 1. If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.

- An $n \times n$ matrix A is said to be orthogonally diagonalizable if there are an orthogonal matrix P (with $P^{-1}=P^{T}$) and a diagonal matrix D such that

$$
\begin{equation*}
A=P D P^{T}=P D P^{-1} \tag{1}
\end{equation*}
$$

- If A is orthogonally diagonalizable as in (1), then

$$
\underline{A^{T}}=\left(P D P^{T}\right)^{T}=P^{T T} D^{T} P^{T}=P D P^{T}=A
$$

- Thus A is symmetric. Conversely, every symmetric matrix is orthogonally diagonalizable as in Theorem 2:

Theorem 2. An $n \times n$ matrix A is orthogonally diagonalizable if and only if A is a symmetric matrix.

- In particular, a symmetric matrix is always diagonalizable.

Example 3. Let $A=\left[\begin{array}{rrr}4 & -1 & -1 \\ -1 & 4 & -1 \\ -1 & -1 & 4\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Verify that 5 is an eigenvalue of A and \mathbf{v} is an eigenvector. Then orthogonally diagonalize A.
ANS: We can either follow the standard calculation to find the eigenvalues and eigenvectors, or we use the given information:

$$
\underline{A} \vec{v}=\left[\begin{array}{ccc}
4 & -1 & -1 \\
-1 & 4 & -1 \\
-1 & -1 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]=2\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=2 \vec{v}
$$

Thus the given \vec{v} is an eigenvector corresponds to $\lambda=2$. To verify 5 is an eigenvalue, we solve $(A-5 I) \vec{v}=\overrightarrow{0}$:

$$
\left[\begin{array}{lll|l}
-1 & -1 & -1 & 0 \\
-1 & -1 & -1 & 0 \\
-1 & -1 & -1 & 0
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This means $(A-5 I) \vec{v}=\overrightarrow{0}$ has nontrivial solutions, so 5 is an eigenvalue for A. (Since if 5 is not an eigenvone, $A \vec{v}=5 \vec{v}$ if and only if $\vec{v}=\overrightarrow{0}$ by the def of eigenvalue).

Moreover.

$$
\vec{V}_{1}=\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right] \quad \vec{V}_{2}=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right] \quad \text { form a basis for }
$$

the eigenspace corresponding to $\lambda=5$.
Since \vec{V}_{1} and \vec{V}_{2} are not orthogonal, we can use the Gram-Schmidt process to find the orthonormal basis.

$$
\begin{aligned}
& \vec{u}_{1}=\vec{v}_{1}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] \\
& \vec{u}_{2}=\vec{v}_{2}-\frac{\left\langle\vec{v}_{2}, \vec{u}_{1}\right\rangle}{\left\langle\vec{u}_{1}, \vec{u}_{1}\right.}{ }^{\prime}
\end{aligned}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right] .
$$

We update \vec{u}_{1} and \vec{u}_{2} by normalizing them,

$$
\begin{aligned}
& \vec{u}_{1}=\frac{\vec{u}_{1}}{\left\|\vec{u}_{1}\right\|}=\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right] \\
& \vec{u}_{2}=\frac{\vec{u}_{2}}{\left\|\vec{u}_{2}\right\|}=\frac{1}{\sqrt{\frac{3}{2}}}\left[\begin{array}{c}
-\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{6}}
\end{array}\right]
\end{aligned}
$$

We also normalize $\vec{v}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ to get $\vec{u}_{3}=\left[\begin{array}{l}\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}}\end{array}\right]$
Let $P=\left[\begin{array}{lll}\overrightarrow{u_{1}} & \overrightarrow{u_{2}} & \vec{u}_{3}\end{array}\right]=\left[\begin{array}{ccc}-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}}\end{array}\right]$ and $D=\left[\begin{array}{ccc}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 2\end{array}\right]$
Then P orthogonally diagonalizes A and

$$
A=P D P^{-1}=P D P^{\top}
$$

The Spectral Theorem

The set of eigenvalues of a matrix A is sometimes called the spectrum of A, and the following description of the eigenvalues is called a spectral theorem.

Theorem 3. The Spectral Theorem for Symmetric Matrices

An $n \times n$ symmetric matrix A has the following properties:
a. A has n real eigenvalues, counting multiplicities.
b. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation.
c. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different eigenvalues are orthogonal.
d. A is orthogonally diagonalizable.

Spectral Decomposition

Suppose $A=P D P^{-1}$, where the columns of P are orthonormal eigenvectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ of A and the corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ are in the diagonal matrix D. Then, since $P^{-1}=P^{T}$,

$$
\begin{aligned}
A & =P D P^{T}=\left[\begin{array}{lll}
\mathbf{u}_{1} & \cdots & \mathbf{u}_{n}
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
\mathbf{u}_{1}^{T} \\
\vdots \\
\mathbf{u}_{n}^{T}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\lambda_{1} \mathbf{u}_{1} & \cdots & \lambda_{n} \mathbf{u}_{n}
\end{array}\right]\left[\begin{array}{c}
\mathbf{u}_{1}^{T} \\
\vdots \\
\mathbf{u}_{n}^{T}
\end{array}\right]
\end{aligned}
$$

Using the column-row expansion of a product (Theorem 10 in Section 2.4), we can write

$$
\begin{equation*}
A=\lambda_{1} \mathbf{u}_{1} \mathbf{u}_{1}^{T}+\lambda_{2} \mathbf{u}_{2} \mathbf{u}_{2}^{T}+\cdots+\lambda_{n} \mathbf{u}_{n} \mathbf{u}_{n}^{T} \tag{2}
\end{equation*}
$$

- This representation of A is called a spectral decomposition of A because it breaks up A into pieces determined by the spectrum (eigenvalues) of A.

Example 4. Construct a spectral decomposition of A from Example 2.
ANS: Recall in Example 2.

$$
P=\left[\begin{array}{lll}
\vec{u}_{1} & \vec{u}_{2} & u_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}}
\end{array}\right] \quad D=\left[\begin{array}{lll}
8 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

Then

$$
A=8 \vec{u}_{1} \vec{u}_{1}^{\top}+6 \vec{u}_{2} \vec{u}_{2}^{\top}+3 u_{3} \vec{u}_{3}^{\top}
$$

Exercise: Verify the above equation holds.
Answer:

$$
\begin{aligned}
& 8 \vec{u}_{1} \vec{u}_{1}^{\top}=8 \cdot\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right]\left[\begin{array}{lll}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0
\end{array}\right]=\left[\begin{array}{ccc}
4 & -4 & 0 \\
-4 & 4 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& 6 \vec{u}_{2} \vec{u}_{2}^{\top}=6\left[\begin{array}{c}
-\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{6}}
\end{array}\right]\left[\begin{array}{lll}
-\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & -2 \\
1 & 1 & -2 \\
-2 & -2 & 4
\end{array}\right] \\
& 3 \vec{u}_{3} \vec{u}_{3}^{\top}=3\left[\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{lll}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Thus

$$
8 \vec{u}_{1} \vec{u}_{1}^{\top}+6 \vec{u}_{2} \vec{u}_{2}^{\top}+3 u_{3} \vec{u}_{3}^{\top}=\left[\begin{array}{ccc}
6 & -2 & -1 \\
-2 & 6 & -1 \\
-1 & -1 & 5
\end{array}\right]=A
$$

Exercise 5. Suppose $A=P R P^{-1}$, where P is orthogonal and R is lower triangular. Show that if A is symmetric, then R is symmetric and hence is actually a diagonal matrix.

Solution. If $A=P R P^{-1}$, then $P^{-1} A P=R$. Since P is orthogonal, $R=P^{T} A P$. Hence $R^{T}=\left(P^{T} A P\right)^{T}=P^{T} A^{T} P^{T T}=P^{T} A P=R$, which shows that R is symmetric. Since R is also lower triangular, its entries below the diagonal must be zeros to match the zeros above the diagonal. Thus R is a diagonal matrix.

Exercise 6. Orthogonally diagonalize the matrices given below, giving an orthogonal matrix P and a diagonal matrix D.
(1) $\left[\begin{array}{rr}1 & -5 \\ -5 & 1\end{array}\right]$
(2) $\left[\begin{array}{rrr}1 & -6 & 4 \\ -6 & 2 & -2 \\ 4 & -2 & -3\end{array}\right]$
(3) $\left[\begin{array}{rrr}5 & 8 & -4 \\ 8 & 5 & -4 \\ -4 & -4 & -1\end{array}\right]$

Solution.

(1) Let $A=\left[\begin{array}{rr}1 & -5 \\ -5 & 1\end{array}\right]$. Then the characteristic polynomial of A is $(1-\lambda)^{2}-25=\lambda^{2}-2 \lambda-24$ $=(\lambda-6)(\lambda+4)$, so the eigenvalues of A are 6 and -4 . For $\lambda=6$, one computes that a basis for the eigenspace is $\left[\begin{array}{r}-1 \\ 1\end{array}\right]$, which can be normalized to get $\mathbf{u}_{1}=\left[\begin{array}{r}-1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$. For $\lambda=-4$, one computes that a basis for the eigenspace is $\left[\begin{array}{l}1 \\ 1\end{array}\right]$, which can be normalized to get $\mathbf{u}_{2}=\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$. Let
$P=\left[\begin{array}{ll}\mathbf{u}_{1} & \mathbf{u}_{2}\end{array}\right]=\left[\begin{array}{rr}-1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]$ and $D=\left[\begin{array}{rr}6 & 0 \\ 0 & -4\end{array}\right]$. Then P orthogonally diagonalizes A, and $A=P D P^{-1}$
(2) Let $A=\left[\begin{array}{rrr}1 & -6 & 4 \\ -6 & 2 & -2 \\ 4 & -2 & -3\end{array}\right]$. The eigenvalues of A are $-3,-6$ and 9 . For $\lambda=-3$, one computes that a basis for the eigenspace is $\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$, which can be normalized to get $\mathbf{u}_{1}=\left[\begin{array}{l}1 / 3 \\ 2 / 3 \\ 2 / 3\end{array}\right]$. For $\lambda=-6$, one computes that a basis for the eigenspace is $\left[\begin{array}{r}-2 \\ -1 \\ 2\end{array}\right]$, which can be normalized to get $\mathbf{u}_{2}=\left[\begin{array}{r}-2 / 3 \\ -1 / 3 \\ 2 / 3\end{array}\right]$. For $\lambda=9$, one computes that a basis for the eigenspace is $\left[\begin{array}{r}2 \\ -2 \\ 1\end{array}\right]$, which can be normalized to get $\mathbf{u}_{3}=\left[\begin{array}{r}2 / 3 \\ -2 / 3 \\ 1 / 3\end{array}\right]$. Let $P=\left[\begin{array}{lll}\mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3}\end{array}\right]=\left[\begin{array}{rrr}1 / 3 & -2 / 3 & 2 / 3 \\ 2 / 3 & -1 / 3 & -2 / 3 \\ 2 / 3 & 2 / 3 & 1 / 3\end{array}\right]$ and $D=\left[\begin{array}{rrr}-3 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & 9\end{array}\right]$. Then P orthogonally diagonalizes A, and $A=P D P^{-1}$.
(3) Let $A=\left[\begin{array}{rrr}5 & 8 & -4 \\ 8 & 5 & -4 \\ -4 & -4 & -1\end{array}\right]$. The eigenvalues of A are -3 and 15 . For $\lambda=-3$, one computes that a which is orthogonal and can be normalized to get basis for the eigenspace is $\left\{\left[\begin{array}{r}2 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 2\end{array}\right]\right\}$
$\left.\underset{[-3}{\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}}=\left\{\begin{array}{r}2 / 3 \\ -1 / 3 \\ 2 / 3\end{array}\right],\left[\begin{array}{r}-1 / 3 \\ 2 / 3 \\ 2 / 3\end{array}\right]\right\}$. For $\lambda=15$, one computes that a basis for the eigenspace is $\left[\begin{array}{r}2 \\ 2 \\ -1\end{array}\right]$ $D=\left[\begin{array}{rrr}-3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 15\end{array}\right]$. Then P orthogonally diagonalizes A, and $A=P D P^{-1}$.

Exercise 7. Suppose A and B are both orthogonally diagonalizable and $A B=B A$. Explain why $A B$ is also orthogonally diagonalizable.

Solution. If A and B are orthogonally diagonalizable, then A and B are symmetric by Theorem 2 . If $A B=B A$, then $(A B)^{T}=(B A)^{T}=A^{T} B^{T}=A B$. So $A B$ is symmetric and hence is orthogonally diagonalizable by Theorem 2 .

